Substrate specificity-conferring regions of the nonribosomal peptide synthetase adenylation domains involved in albicidin pathotoxin biosynthesis are highly conserved within the species Xanthomonas albilineans.
نویسندگان
چکیده
Albicidin is a pathotoxin produced by Xanthomonas albilineans, a xylem-invading pathogen that causes leaf scald disease of sugarcane. Albicidin is synthesized by a nonribosomal pathway via modular polyketide synthase and nonribosomal peptide synthetase (NRPS) megasynthases, and NRPS adenylation (A) domains are responsible for the recognition and activation of specific amino acid substrates. DNA fragments (0.5 kb) encoding the regions responsible for the substrate specificities of six albicidin NRPS A domains from 16 strains of X. albilineans representing the known diversity of this pathogen were amplified and sequenced. Polymorphism analysis of these DNA fragments at different levels (DNA, protein, and NRPS signature) showed that these pathogenicity loci were highly conserved. The conservation of these loci most likely reflects purifying selective pressure, as revealed by a comparison with the variability of nucleotide and amino acid sequences of two housekeeping genes (atpD and efp) of X. albilineans. Nevertheless, the 16 strains of X. albilineans were differentiated into several groups by a phylogenetic analysis of the nucleotide sequences corresponding to the NRPS A domains. One of these groups was representative of the genetic diversity previously found within the pathogen by random fragment length polymorphism and amplified fragment length polymorphism analyses. This group, which differed by three single synonymous nucleotide mutations, contained only four strains of X. albilineans that were all involved in outbreaks of sugarcane leaf scald. The amount of albicidin produced in vitro in agar and liquid media varied among the 16 strains of X. albilineans. However, no relationship among the amount of albicidin produced in vitro and the pathotypes and genetic diversity of the pathogen was found. The NRPS loci contributing to the synthesis of the primary structure of albicidin apparently are not involved in the observed pathogenicity differences among strains of X. albilineans.
منابع مشابه
What makes Xanthomonas albilineans unique amongst xanthomonads?
Xanthomonas albilineans causes leaf scald, a lethal disease of sugarcane. Compared to other species of Xanthomonas, X. albilineans exhibits distinctive pathogenic mechanisms, ecology and taxonomy. Its genome, which has experienced significant erosion, has unique genomic features. It lacks two loci required for pathogenicity in other plant pathogenic species of Xanthomonas: the xanthan gum biosy...
متن کاملThe phytotoxin albicidin is a novel inhibitor of DNA gyrase.
Xanthomonas albilineans produces a family of polyketide-peptide compounds called albicidins which are highly potent antibiotics and phytotoxins as a result of their inhibition of prokaryotic DNA replication. Here we show that albicidin is a potent inhibitor of the supercoiling activity of bacterial and plant DNA gyrases, with 50% inhibitory concentrations (40 to 50 nM) less than those of most c...
متن کاملFull Genome Sequence Analysis of Two Isolates Reveals a Novel Xanthomonas Species Close to the Sugarcane Pathogen Xanthomonas albilineans
Xanthomonas albilineans is the bacterium responsible for leaf scald, a lethal disease of sugarcane. Within the Xanthomonas genus, X. albilineans exhibits distinctive genomic characteristics including the presence of significant genome erosion, a non-ribosomal peptide synthesis (NRPS) locus involved in albicidin biosynthesis, and a type 3 secretion system (T3SS) of the Salmonella pathogenicity i...
متن کاملDeciphering the biosynthetic codes for the potent anti-SARS-CoV cyclodepsipeptide valinomycin in Streptomyces tsusimaensis ATCC 15141.
Valinomycin was recently reported to be the most potent agent against severe acute respiratory-syndrome coronavirus (SARS-CoV) in infected Vero E6 cells. Aimed at generating analogues by metabolic engineering, the valinomycin biosynthetic gene cluster has been cloned from Streptomyces tsusimaensis ATCC 15141. Targeted disruption of a nonribosomal peptide synthetase (NRPS) gene abolishes valinom...
متن کاملThe specificity-conferring code of adenylation domains in nonribosomal peptide synthetases.
BACKGROUND Many pharmacologically important peptides are synthesized nonribosomally by multimodular peptide synthetases (NRPSs). These enzyme templates consist of iterated modules that, in their number and organization, determine the primary structure of the corresponding peptide products. At the core of each module is an adenylation domain that recognizes the cognate substrate and activates it...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Applied and environmental microbiology
دوره 73 17 شماره
صفحات -
تاریخ انتشار 2007